SOURCE: A MIDWESTERN DOCTOR, THE FORGOTTEN SIDE OF MEDICINE
DMSO Could Save Millions From Brain and Spinal Injury
The decades of evidence showing DMSO revolutionizes the care of many "untreatable" circulatory and neurologic conditions.
Sep 15
Story at a Glance:
•DMSO is a remarkably safe chemical that protects cells from otherwise fatal stressors (e.g., freezing, burning, shockwaves, ischemia). Since the heart, brain, and spinal cord are particularly vulnerable to injury, DMSO can produce miraculous results for those conditions.
•The usage of DMSO completely transforms the management of strokes (including brain bleeds), heart attacks, and spinal cord injuries. As I will show here, had the FDA not sabotaged DMSO’s adoption, in addition to countless lives being saved, millions could have been protected from a lifetime of disability or paralysis.
•DMSO has many other remarkable properties. For example, it stabilizes proteins, and thus treats many challenging protein disorders (e.g., amyloidosis and numerous genetic disorders).
•Many conditions DMSO treats are typically considered to be incurable. In this article, I will focus on DMSO’s remarkable utility for the conditions that respond best to intravenous DMSO (e.g., a variety of circulatory disorders like varicose veins or Raynaud’s) and complex neurological disorders (e.g., Down’s Syndrome, Developmental Delay, ALS, Alzheimer’s, Parkinson’s), along with how to administer IV DMSO and DMSO stroke protocols.
If I were stranded on a desert island or knew the world was ending and I could only bring a few therapies with me, one of them, without a doubt, would be DMSO. This is because:
•It treats a wide range of severe illnesses which are often otherwise incurable and frequently fatal or lead to a lifetime of permanent disability.
•It effectively treats acute injuries and rehabilitates chronic musculoskeletal disorders (e.g., arthritis). Because of this, it’s one of the best “pain medicines” out there and has allowed many to get their lives back.
•It has a variety of unique properties that open up a completely different dimension to how medicine can be practiced.
•It is one of the safest medically active substances in existence.
Remarkably, in the 1960s, this was recognized and DMSO took the nation by storm (e.g., people everywhere were clamoring for it, gas stations would often advertise they sold it, and tens of thousands of research studies were conducted by enthusiastic scientists around the globe). Now however, outside of it being a laboratory chemical or an alternative therapy some people use for joint pain, few are even aware of DMSO’s existence.
This was due to the FDA waging a multi-decade long war against DMSO (despite widespread outcry from Congress and the public), which I believe was arguably the worst thing the FDA has ever done to the country.
Since I am uniquely positioned to present many of the forgotten sides of medicine to the public, I’ve long felt the DMSO story needs to be told. Simultaneously however, since there is a wealth of data on this topic, I wanted to ensure I honored the importance of this subject and accurately present it. For this reason, I’ve spent the last three months reading and arranging thousands of pages of literature. Since there is so much to say on this topic, this series will be broken into a few parts. In the first installment, I will cover the key properties of DMSO and the challenging conditions where it provides the most profound benefits.
What is DMSO?
Dimethyl sulfoxide, as the name implies, is comprised of two methyl groups and an oxygen atom bonded to sulfur. This simple chemical and its breakdown products exist in nature (e.g., they can be found in small amounts in milk, tomatoes, tea, coffee, beer clams, and cooked corn, while the salty smell of the ocean is, in part, due to microalgae near the surface creating dimethyl sulfoxide—some of which also makes it into the rain).
In the body, DMSO is then oxidized or reduced, with the oxidized form (more commonly known by the name methylsulfonylmethanethe or MSM—a common joint healing supplement) being the primary fate of it, while the reduced form DMSO (which naturally exists in trace amounts in the body) is the more notorious metabolite because it is responsible for DMSO’s characteristic “side effect,” a distinctive garlic or clam-like odor (or taste) that is excreted through the mouth and skin which certain individuals have difficulty tolerating (and forcing certain longterm DMSO users to creatively arrange their social life). This effect typically lasts a few hours, but in certain cases can last up to 72 hours, and appears to be reflective of the overall health of the body (since as people detox, their DMSO odor decreases).
Note: one school of thought in integrative medicine (e.g., Dr. Mercola is a strong proponent of this model) argues that insufficient oxidation, which leads to a build-up of reduced molecules in the body (termed reductive stress) is a root cause of many illnesses (e.g., the mitochondria cannot function properly if the electron transport chain is reduced). The susceptibility to the DMSO odor is one of the best illustrations I have found of this model, particularly since there are many reports showing that concurrently taking chlorine dioxide (an oxidizing agent) eliminates it (as does a user’s overall health improving over time). Likewise, some DMSO users and one study have found that when DMSO was taken at the same time as alcohol (another oxidizing agent), the odor was reduced, whereas when alcohol was given an hour after DMSO, the opposite occurred (which touches upon the fact DMSO can sometimes cause excessive drowsiness if combined with a sedative).
Due to its relatively small size, having both a polar and non-polar half, being able to form hydrogen bonds slightly stronger than those found between water molecules, and not releasing protons, DMSO has two remarkable properties:
•It acts as a near-universal solvent (e.g., it interacts with a vast range of biomolecules and can easily mix with any concentration of water).
•It’s able to pass through biological membranes without damaging them (something to my knowledge, nothing else can do).
Because of this, DMSO will rapidly enter the body (including the brain) regardless of its route of administration (e.g., within 5 minutes after going on the skin it can be found in the blood, and within an hour it can be found within the bones), but simultaneously does not accumulate within the body after prolonged use (and virtually none remains a week after administration).
Note: in one study of rats, radio-labeled DMSO was found to enter all tissues of the body within 30 minutes (with the highest levels seen in the plasma, kidney, spleen, lung, heart, and testes and the lowest in the lens of the eye), with DMSO levels declining to minimal levels after 24 hours, while another study found orally administered DMSO reached a peak blood level in 4 hours and was undetectable after 120 hours, while MSM appeared in the blood after 48 hours and disappeared after 400 hours (with another human study finding similar results).
DMSO in turn, has an almost endless amount of uses as it can be applied in almost any manner (e.g., it is frequently applied through the skin—although less is absorbed in this manner than the other routes of administration). Almost any drug or substance can be combined with it and administered through the skin (e.g., steroids, NSAIDs, numerous antibiotics or antivirals, glucose, vitamin C, hydrogen peroxide, or chlorine dioxide). In many cases, the effect of those drugs is enhanced, and simultaneously, their toxicity is reduced (although, in some cases, the toxicity increases).
Note: DMSO is less effective at bringing larger molecules into the body (e.g., it had been hoped it could be mixed with insulin so diabetics could have a way to bypass the need for injecting insulin—but this didn’t work).
Cellular Protection
DMSO’s ability to spread throughout the body (including into the brain) initially seems concerning—however rather than be toxic to cells, DMSO heals them and protects them from damage and a wide range of otherwise lethal stressors. Since DMSO does not expand when it freezes (at 65.4°F), this property (and the fact that a 66% DMSO 33% water mixture freezes at -99.4°F), has made it a revolutionary substance for preserving frozen cells (e.g., stem cells). In contrast, very few other substances exist that cells can tolerate such a high concentration of.
Note: since some of the information I need to present here is a bit technical for those wanting more references, if you find some of the information is too dense, skip over it. Additionally, I need to acknowledge many of these experiments were cruel and go against my own values of supporting animal welfare.
DMSO, in turn, has been shown to:
•Protect tissue from dying when its blood supply is cut off (e.g., in skin flaps, in the kidneys [replicated here], in the small intestine, in the liver, or in the heart—particularly when hydrogen peroxide is given concurrently as an oxygen donor), prevent a reperfusion injury when its blood flow is restored, prevent the formation of clots when blood flow is restored (e.g., in mesenteric veins), reduce the amount of permanently damaged tissue following a myocardial infarction and maintain the heart’s ability to circulate blood when its blood supply is cut off.
•Prevent heart damage caused by dietary copper deficiency and kidney failure caused by toxic mercury exposure.
•Increase the production of ATP in cells (e.g., minute concentrations of DMSO have been shown to increase metabolism by shunting metabolites from glycolysis to the mitochondrial Krebs cycle), which likely both accounts for some of DMSO’s protective effects and its anticancer effects.
•Prevent a rapid influx of calcium or sodium ions, a process which frequently occurs when a cell’s viability is threatened (and then results in the death of the cell).
•Prevent asphyxiation from being lethal (e.g., one study put rats into a pure nitrogen environment for 210 seconds, and found that 90% who received DMSO in advance survived compared to 15% of those that received saline).
•Protect cells from being destroyed by sonic disruption via an ultrasonic vibrator (with 78% of cells receiving 10% DMSO surviving compared to 13% of controls).
•Save the fingers of individuals with severe frostbite that would otherwise require amputation. DMSO has also been shown to protect cells from freezing damage, and to protect rabbit ears and thighs from being damaged by frostbite induced by immersion in a -42°C bath.
•Treat a variety of burns without being prone to producing infections (e.g., a 1985 study by Russian burn specialists, in adolescents, found DMSO was superior to the other treatment options [nitrofurazone, trimecaine, and monomycin]). This includes severe acid skin burns (along with preventing their progress), and both acidic and alkaline burns that erode the esophagus (e.g., by inhibiting the destructive inflammatory response following those esophageal burns).
Finally, a study of 1371 patients with skin disorders (including 173 patients with second or third-degree burns on the hands, feet, and legs) who received a topical DMSO spray approximately three times a week found that 95.04% had a complete recovery, with the majority of the remaining 4.96% being due to premature cessation of DMSO or the patient no longer being under observation.
There are also cases of severe burns that within minutes stopped hurting (a major problem with burns), didn’t blister, and recovered completely. One of the most extraordinary ones (reported by William Campbell Douglass) involved six year old girl who’d slipped her index finger in a light socket for a prolonged period, after which it was cooked through and burned ash white at the tip. Within 30 minutes Douglass got the finger into a full-strength DMSO bath, and after 20 minutes, the searing pain had disappeared, the next day the finger turned pink, and then rather than be lost, fully recovered.
Note: patients have also reported DMSO relieves sunburns in 10-30 minutes.
•Protect cells from being damaged by (often otherwise fatal) radiation. For example, numerous reports showed applying DMSO to newborn rat skin protected them from damage from x-ray exposure, while in fruit flies, DMSO significantly reduced x-ray mortality and mutations of their sperm and in golden hamster embryos, DMSO protected them from gamma rays—the strongest form of radiation. DMSO has also been shown to prevent damage to mouse eyes following radiation exposure and to prevent the harmful (bystander) signals irradiated cells emit in their vicinity from damaging non-radiated cells (a fascinating phenomenon which I believe is mediated through mitogenic radiation). Likewise, DMSO has been repeatedly shown to reduce chromosome damage from radiation.
Note: DMSO has also been found to prevent damage from radiation therapy in non-cancerous cells and thus has been used as complementary cancer treatment.
•Neutralize harmful free radicals (e.g., those caused by radiation like hydroxyl) through scavenging charged ions (e.g., H+) and forming protective DMSO radicals. This, for example, was shown to be a mechanism behind DMSO’s ability to protect DNA from being damaged by radiation. Additionally, one study found DMSO prevented 80% of the DNA damage caused by gamma radiation and 100% of the DNA damage caused by a free radical generating system (which used iron and hydrogen peroxide).
Finally, due to these protective qualities, DMSO’s toxicity is extremely low (e.g., due to the immense scrutiny DMSO has been subject to, a large number of animal safety studies were conducted, and in these, animals survived extraordinarily high doses of DMSO). Many human studies have also been done, the most significant of which involved 78 prisoners over the course of 14 and then 90 days applying 1 g/kg to their skin (over 3-30 times the maximum amount of DMSO typically used) and then being subject to an extensive battery of toxicology tests—all of which showed DMSO was safe. In turn, despite millions of treatments having been given, no death has ever been linked to DMSO (and the only two ever considered, one in 1965, and one in 1994 did not make a strong case DMSO was the cause of death).
Note: thousands of papers have been published on the biological effects of DMSO and I have not yet found one that reported an adverse event from DMSO. Because of that, I’ve mostly avoided mentioning each study I site here, “detected no adverse events from DMSO.”
Along with the garlic breath, the most common side effect (affecting 50-75% of users) is (reversible) irritation at the site when 70% DMSO is applied topically on the skin (which can be mitigated by applying a lower concentration of DMSO and frequently decreases with increasing topical application), that occasionally after prolonged used can lead to minor reversible changes in the skin (e.g., scaling). In roughly 15% of patients this skin reaction is marked and in 3.5% it is significant enough that they stop treatment.
Less common side effects include nausea, increased urination, sleepiness, and difficulty tolerating high IV doses. The most consequential (but fairly rare) side effect is an allergic reaction to it (which affects roughly 1 in 2000 users—although it does not ever seem to manifest in an anaphylactic fashion). Additionally, there is a high theoretical risk of a poison being on the skin when DMSO is applied and brought into the body (hence why patients are advised to wash their skin before applying DMSO) but significant instances of this have been extraordinarily rare despite millions of DMSO treatments being performed (rather the more common issue arises from using incompatible IV tubing which DMSO can dissolve as it travels to the body). Lastly, it is generally advised not to inhale DMSO (although it rarely vaporizes).
Circulatory Disorders
In addition to protecting tissues from death, DMSO is remarkably effective at removing excess fluid from outside the bloodstream, increasing circulation, and eliminating circulatory obstructions (e.g., clots). As each of these issues comes up quite frequently, DMSO is often extremely helpful in a variety of circulatory disorders.
For example, the leading DMSO researcher found that 50% of patients with Raynaud’s syndrome had their symptoms eliminated with DMSO and that thrombophlebitis responds excellently to DMSO. Likewise, DMSO has been shown to improve diabetic circulatory impairments such as peripheral neuropathy, or diabetic ulcers (where one study of hundreds of patients reported over a 94% treatment success rate) and prevent future amputations.
DMSO (topically and especially intravenously) is also quite helpful for varicose veins, in some cases improving the varicose veins within minutes and having the wiggly veins not reappear for months, which has been hypothesized to result from DMSO strengthening the vessel walls and their tone alongside generally improving venous and capillary circulation. Likewise, a study of 67 patients with varicose ulcers (39 females and 28 males), found they had a remarkable response to DMSO (even chronic ulcers which had been present for years).
Additionally, DMSO has been shown to help many other circulatory disorders:
This is likely because, in addition to the previously mentioned properties:
DMSO can also increase or decrease the force of heart contractions (e.g., a 70 mM DMSO concentration or less has a positive inotropic effect, while a higher one can do the opposite or create a mild hyperpolarization that prolongs the action potential) in a manner independent of beta-adrenergic receptors, and does not alter cardiac rhythm. A slow infusion of DMSO can also cause a reduction of systemic vascular resistance and an increase in cardiac output (which was also shown in this study that simulated a heart attack).
DMSO prevents blood clot formation in the body and is a powerful platelet deaggregator (which prevents clotting). For example, it was found to reverse the reduction of coronary blood flow induced by a critical stenosis on the canine [dog] circumflex coronary artery without changing their other circulatory parameters, and it’s been shown with electron microscopy that DMSO prevented clots from forming at surgically blocked carotid arteries.
DMSO’s effects on platelets are thought to be because:
•DMSO is a sulf-hydryl inhibitor (which platelets need to bond) and a hydroxyl radical scavenger (which also inhibits platelet function).
•DMSO inhibits tissue factor (TF) expression (a key part of clot formation—especially in the presence of TNF-α), thrombus (clot) formation, and vascular smooth muscle cell activation. TF (a platelet protein) is a key link between inflammation and blood clotting.
•It increases cAMP (cAMP inhibits platelet aggregators) by inhibiting one or more of the platelet enzymes that breaks cAMP down (PDE2, PDE3, and PDE5—which is how many circulation improving drugs like Viagra also work, along with certain cognitive improving ones).
•It is a selective inhibitor of COX-1, it stimulates PGE1, and inhibits PGF2α, blocks PGE2 synthesis and likely blocks the release of thromboxane A2.
In short, DMSO provides a variety of anti-clotting activities which are similar to (but eclipse) the effects of aspirin and unlike aspirin, does not have any associated adverse effects, which leads to a remarkable number of potential uses for it (e.g., incorporating it into a drug eluting coronary stent). These charts in turn tie together much of the above: